Machine Duping
Pwning Deep Learning Systems
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Deep Learning

deep neural networks (DNN)

Not a new toy - history goes back to 1943
MUCH MORE DATA EVERYWHERE

Revived due to improvements in computational hardware (esp. GPUSs)

Multiple concurrent matrix operations can be performed

MYTH: “Modeled after how the human brain works”



Up to 16x More Inference Perf/Watt
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Deep Learning

why would someone choose to use it?

(Semi)Automated

. One infrastructure for
feature/representation

multiple problems (sort of)

learning
Hierarchical learning: Efficient,
Divide task across easily distributed &

multiple layers parallelized



Definitely not one-size-fits-all



Deep learning
- Example:

Example: Shallow
MLPs autoencoders

Representation learning

Machine learning

Example:
Logistic
regression

Example:
Knowledge
bases

Source: Deep Learning: Goodfellow et. al.



4-5-3 Neural Net Architecture
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[raining Deep Neural Networks

Step 1 of 2: Feed Forward

1. Each unit receives output of the neurons in the previous layer (+ bias
signal)

2. Computes weighted average of inputs
3. Apply weighted average through nonlinear activation function

4. For DNN classifier, send final layer output through softmax function

activation activation activation
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[raining Deep Neural Networks

Step 2 of 2: Backpropagation

1. If the model made a wrong prediction, calculate the error

1. In this case, the correct class is O, but the model predicted 1 with 57% confidence - error is thus 0.57

2. Assign blame: trace backwards to find the units that contributed to this wrong
prediction (and how much they contributed to the total error)

1. Partial differentiation of this error w.r.t. the unit's activation value

3. Penalize those units by decreasing their weights and biases by an amount proportional
to their error contribution

4. Do the above efficiently with optimization algorithm e.g. Stochastic Gradient Descent

activation activation activation
function function function total error
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HOW?






Beyond Multi Layer Perceptrons

Convolutional Neural Network

Center element of the kernel is placed over the
source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

Source pixel

Convolution kernel
(emboss)

New pixel value (destination pixel)

Source: iOS Developer Library
vimage Programming Guide



Beyond Multi Layer Perceptrons

Convolutional Neural Network

C3:f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5
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Source: LeNet 5, LeCun et. al.



Beyond Multi Layer Perceptrons

Recurrent Neural Network

loop(s)
LT TTTETETT 2
Just a DNN with a feedback loop :
T Ao :
Previous time step feeds all “,
intermediate and final values into , {  neural - .
. input —»: # > output
next time step s network .

Introduces the concept of “memory”
to neural networks



Beyond Multi Layer Perceptrons
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Beyond Multi Layer Perceptrons
Long Short-Term Memory (LSTM) RNN

To make good predictions, we sometimes
need more context

We need long-term memory capabilities
without extending the network’s recursion
indefinitely (unscalable)

e Y

Disne;/, Finding Dory

Colah’s Blog, “Understanding LSTM Networks"
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TRAPs+ Deep Belief

TRAPs lattice resc. AUgM.  Neotworks |

SUMMIT CKREs

2 HTM
.\’ILP/ HMM x Boltzmann

TDNN x Machines

MLP/CRF

x  Milestones in phone recognition accuracy using the TIMIT database

l l l l l l l l l 1
1990 1992 1994 1996 2000 2002 2004 2006 2008

Date (22 years)

Carla et. al., “Phone Recognition on the TIMIT Database”




Conversational Speech

Read
Speech

Broadcast
Speech
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2011
Deng et. al. “Deep Learning: Methods and Applications”




Beyond Multi Layer Perceptrons

Recursive Neural Tensor Network
(for sentiment analysis)

* Handles multiplicity in the data

- Window/batch of events @

| does nt care @ @
- i.e. a phrase of words about & T e
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+ |.e. 24 frames of a video Yoy O
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cleverness other kind intelligent humor

Socher, 2013, “Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank"



Deep Neural Networks

Research in this field is still very active

So much is going on in this space now



Deep Neural Networks

State of the art optimizations that you can use out of the box

.J-us"' Afo 0u+
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Dropout

Regularization technique:
randomly drop units & connections during training
dropout factor 0.5 found to perform well across
many applications

Srivastava et. al., 2014

The Foothill Dragon Press



Deep Neural Networks

State of the art optimizations that you can use out of the box

PCA Whitening

Dimensionality Reduction
frequently used for noisy image inputs
changes the input vector into a white noise vector

original data decorrelated data whitened data

Stanford CS231n



Deep Neural Networks

State of the art optimizations that you can use out of the box

Leaky Rectified Linear Unit (ReLU)
Activation Function

Popular activation function (other popular ones are
sigmoid, tanh, ReLU)

He et. al., 2015



Deep Neural Networks

State of the art optimizations that you can use out of the box

Loss function
optimization methods

DatumBox, 2013



HOW TO PWN?



Attack laxonomy

Applicable also to online-learning
models that continuously learn 4+ = = = — _ _
from real-time test data ~

~
~N

S
N

Causative Exploratory

(Manipulative training samples) (Manipulative test samples)

Training samples that move
classifier decision boundary in an
intentional direction

Adversarial input crafted to cause
an intentional misclassification

Training samples that increase FP/FN

- Nn/a
- renders classifier unusable

Indiscriminate







MNIST MISCLASSIFICATION



SENTIMENT MISCLASSIFICATION



Why can we do this?

VS.

BLINDSPOTS:

Statistical learning models don't learn concepts the same way that we do.



Adversarial Deep Learning

Intuitions

1. Run iﬂp“t X through the classifier model (or substitute/approximate model)

2. Based on model prediction, derive a perturbation tensor that
maximizes chances of misclassification:

1. Traverse the manifold to find blind spots in input space; or
2. Linear perturbation in direction of neural network’s cost function gradient; or

3. Select only input dimensions with high saliency* to perturb by the model’'s Jacobian matrix

3. Scale the perturbation tensor by some magnitude, resulting in the
effective perturbation (0x) to x

1. Larger perturbation == higher probability for misclassification

2. Smaller perturbation == less likely for human detection

* saliency: amount of influence a selected dimension has on the entire model’s output



Adversarial Deep Learning

Intuitions

Szegedy, 2013: Traverse the manifold to find blind spots in the input space
Adversarial samples == pockets in the manifold
Difficult to efficiently find by brute force (high dimensional input)

Optimize this search, take gradient of input w.r.t. target output class



Adversarial Deep Learning

Intuitions

Goodfellow, 2015: Linear adversarial perturbation
Developed a linear view of adversarial examples

Can just take the cost function gradient w.r.t. the sample (x) and original
predicted class (y)

Easily found by backpropagation



Adversarial Deep Learning

Intuitions

Papernot, 2015: Saliency map + Jacobian matrix perturbation

More complex derivations for why the Jacobian of the learned neural network
function is used

Obtained with respect to input features rather than network parameters

Forward propagation is used instead of backpropagation

To reduce probability of human detection, only perturb the dimensions that
have the greatest impact on the output (salient dimensions)
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Deep Neural Network Attacks

Adversary

knowledge
Architecture, ®

Training Tools, Goodfellow, 2016
Hyperparameters ®
Nguyen, 2014
Architecture Murphy, 2012 Szegedy, 2014
Training data
Oracle Papernot, 2016
Xu, 2016

Labeled Test
samples

Attack
complexity




What can you do with imited knowledge?

* Quite a lot.

+ Make good guesses: Infer the methodology from the task
+ Image classification: ConvNet
+ Speech recognition: LSTM-RNN

« Amazon ML, ML-as-a-service etc.: Shallow feed-forward network

+ What if you can’t guess?



STILL CAN PWN?






1. Transferability

Adversarial samples that fool model A have a
good chance of fooling a previously unseen
model B

. :;.e,‘.
. o S0 ot
. 0.00. o.oo. © ’?. .“
o % ¢ : .. : .’o'ﬁ'o'.: .:o ‘e ’
TR SN
a '.o.°.o . ® ':.‘Q: * .:Co o ¢
RS A I
20 .. ."..ﬁ“..;:.ﬁ §° .:o ¢ :
.o.’, o« W7 0‘ ‘
) 0.".. o %o < ® . .
Btatet . Decision Tree
" .+ * Linear Classifier ,
e le Feed Forward Neural Network Matt's Webcorner, Stanford



Black box attack methodology
2. Substitute model

train a new model by treating the target model’s
output as a training labels
then, generate adversarial samples with " edictio® . vvereneinanan,, Main;,
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Why is this possible?

»  Transferability?

Still an open research problem

* Manifold learning problem
Blind spots

Model vs. Reality dimensionality mismatch

- IN GENERAL:

* Is the model not learning anything
at all?



What this means for us

Deep learning algorithms (Machine Learning in general) are susceptible to
manipulative attacks

+ Use with caution in critical deployments
Don't make false assumptions about what/how the model learns

Evaluate a model’'s adversarial resilience - not just accuracy/precision/recall

Spend effort to make models more robust to tampering



Defending the machines

Distillation

Train model 2x, feed first DNN output logits into second DNN input layer

Train model with adversarial samples

i.e. ironing out imperfect knowledge learnt in the model

Other miscellaneous tweaks

Special reguIarization/loss-function methods (simulating adversarial content during training)

DATAGRAD
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“metasploit for machine learning”
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https://github.com/cchio/deep-pwning

WHY DEEP-PWNING?

* lol why not
“Penetration testing” of statistical/machine learning systems

Train models with adversarial samples for increased robustness






CONTRIBUTE!



Deep Learning and Privacy

Deep learning also sees challenges in other areas relating to security &
privacy

Adversary can reconstruct training samples from a trained black box
DNN model (Fredrikson, 2015)

Can we precisely control the learning objective of a DNN model?

Can we train a DNN model without the training agent having complete
access to all training data? (shokri, 2015)







WHY DEEP-PWNING?

* MORE CRITICAL SYSTEMS RELY ON MACHINE LEARNING = MORE IMPORTANCE
ON ENSURING THEIR ROBUSTNESS

 WE NEED PEOPLE WITH BOTH SECURITY AND STATISTICAL SKILL SETSTO
DEVELOP ROBUST SYSTEMS AND EVALUATE NEW INFRASTRUCTURE



LEARN IT OR BECOME IRRELEVANT

w



@cchio
MLHACKER




